1. This program finds the largest factor of \(X \), less than \(X \), by counting down from \(X \) until it finds a factor. The loop ends when \(C \) changes from zero.

\[
X = \max \text{ integer } y \text{ such that } y \cdot \text{divisible by } X, y < X.
\]

2. \(\bar{X}(X + \bar{Y}) + \bar{Y}(Y + \bar{Z}) + \bar{Y} = XX + X\bar{Y} + YY + Y\bar{Z} + \bar{Y} = 0 + XY + \bar{Y} + \bar{Z} + \bar{Y} = \bar{Y}(X + 1 + \bar{Z}) = \bar{Y} \)

3. \(\bar{A} + AB + A\bar{B} = \bar{A} + A(B + \bar{B}) = \bar{A} + A = 1 \). The 1 denotes that the expression is always TRUE. All 4 possible inputs must be listed.

4. Working from the inside out:

 \[
 \begin{align*}
 \text{RSHIFT} &- 1 10100 = 01010 \\
 \text{LCIRC} &- 2 01010 = 01001 \\
 \text{LSHIFT} &- 2 01001 = 00100
 \end{align*}
 \]

5. Let \(X = abcde \). The equation becomes \(00110 \text{ OR } abcde = 10110 \). Consider the equation bit by bit.

 0 OR a = 1 implies a = 1
 0 OR b = 0 implies b = 0
 1 OR c = 1 implies c can be either a 1 or a 0
 1 OR d = 1 implies c can be either a 1 or a 0
 0 OR e = 0 implies e = 0

(1, 0, *, *, 0) gives 4 possible solutions